TY - JOUR
T1 - Current-use pesticide exposure pathways in Czech adults and children from the CELSPAC-SPECIMEn cohort
AU - Šulc, Libor
AU - Figueiredo, Daniel
AU - Huss, Anke
AU - Kalina, Jiří
AU - Gregor, Petr
AU - Janoš, Tomáš
AU - Šenk, Petr
AU - Dalecká, Andrea
AU - Andrýsková, Lenka
AU - Kodeš, Vít
AU - Čupr, Pavel
N1 - Publisher Copyright:
© 2023
PY - 2023/11
Y1 - 2023/11
N2 - INTRODUCTION: In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study.METHODS: First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields.RESULTS: EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake.CONCLUSION: In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.
AB - INTRODUCTION: In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study.METHODS: First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields.RESULTS: EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake.CONCLUSION: In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.
KW - Current-use pesticides
KW - Dietary exposure
KW - Environmental exposure
KW - HBM4EU
KW - Organic diet
KW - Pesticide application
UR - http://www.scopus.com/inward/record.url?scp=85175843885&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2023.108297
DO - 10.1016/j.envint.2023.108297
M3 - Article
C2 - 37939438
SN - 0160-4120
VL - 181
JO - Environment International
JF - Environment International
M1 - 108297
ER -