Abstract
In systems with small spin-orbit coupling, current-induced torques on the magnetization require inhomogeneous magnetization textures. For large spin-orbit coupling, such torques exist even without gradients in the magnetization direction. Here, we consider current-induced torques in ferromagnetic metals with both Rashba spin-orbit coupling and inhomogeneous magnetization. We first phenomenologically construct all torques that are allowed by the symmetries of the system, to first order in magnetization-direction gradients and electric field. Second, we use a Boltzmann approach to calculate the spin torques that arise to second order in the spin-orbit coupling. We apply our results to current-driven domain walls and find that the domain-wall mobility is strongly affected by torques that result from the interplay between spin-orbit coupling and inhomogeneity of the magnetization texture.
Original language | English |
---|---|
Article number | 094406 |
Number of pages | 9 |
Journal | Physical review. B, Condensed matter and materials physics |
Volume | 86 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2012 |