CT-based data generation for foreign object detection on a single X-ray projection

Vladyslav Andriiashen*, Robert van Liere, Tristan van Leeuwen, K. Joost Batenburg

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Although X-ray imaging is used routinely in industry for high-throughput product quality control, its capability to detect internal defects has strong limitations. The main challenge stems from the superposition of multiple object features within a single X-ray view. Deep Convolutional neural networks can be trained by annotated datasets of X-ray images to detect foreign objects in real-time. However, this approach depends heavily on the availability of a large amount of data, strongly hampering the viability of industrial use with high variability between batches of products. We present a computationally efficient, CT-based approach for creating artificial single-view X-ray data based on just a few physically CT-scanned objects. By algorithmically modifying the CT-volume, a large variety of training examples is obtained. Our results show that applying the generative model to a single CT-scanned object results in image analysis accuracy that would otherwise be achieved with scans of tens of real-world samples. Our methodology leads to a strong reduction in training data needed, improved coverage of the combinations of base and foreign objects, and extensive generalizability to additional features. Once trained on just a single CT-scanned object, the resulting deep neural network can detect foreign objects in real-time with high accuracy.

Original languageEnglish
Article number1881
Pages (from-to)1-11
Number of pages11
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - 2 Feb 2023

Fingerprint

Dive into the research topics of 'CT-based data generation for foreign object detection on a single X-ray projection'. Together they form a unique fingerprint.

Cite this