Abstract
The injection of urea-water-solution sprays in the exhaust pipe of modern diesel engines eliminates NOx emissions in a very great extent. However, as water evaporates from the solution, urea is crystallized and causes walldeposit formations hindering the performance of selective-catalytic-reaction. In this study, the crystallization of urea from an evaporative aqueous solution droplet placed on a heated wall is experimentally investigated, aiming to understand macroscopically the morphology of crystal growth at various conditions. Using optical and
thermal imaging, urea crystallization patterns are examined at sub-boiling temperatures and substrates with different wettability. In all cases, the macroscopic initiation of crystal growth starts at the solid-liquid interface when urea concentration has reached supersaturated conditions. The experiments indicate two different crystallization modes depending on surface temperature and wettability as well as a significant heat release at the solidification front due the exothermic character of the process.
thermal imaging, urea crystallization patterns are examined at sub-boiling temperatures and substrates with different wettability. In all cases, the macroscopic initiation of crystal growth starts at the solid-liquid interface when urea concentration has reached supersaturated conditions. The experiments indicate two different crystallization modes depending on surface temperature and wettability as well as a significant heat release at the solidification front due the exothermic character of the process.
Original language | English |
---|---|
Pages (from-to) | 80-88 |
Number of pages | 9 |
Journal | Experimental Thermal and Fluid Science |
Volume | 91 |
DOIs | |
Publication status | Published - Feb 2018 |
Keywords
- AdBlue
- Crystallization
- Wettability
- Thermodynamics