Abstract
Using a grand-canonical Landau-de Gennes theory for colloidal suspensions of bent (banana-shaped) rods, we investigate how spatial deformations in the nematic director field affect the local density of twist-bend and splay-bend nematic phases. The grand-canonical character of the theory naturally relates the local density to the local nematic order parameter S. In the splay-bend phase, we find S and hence the local density to modulate periodically along one spatial direction. As a consequence the splay-bend phase has the key symmetries of a smectic rather than a nematic phase. By contrast we find that S and hence the local density do not vary in space in the twist-bend phase, which is therefore a proper nematic phase. The theoretically predicted one-dimensional density modulations in splay-bend phases are in agreement with recent simulations.
Original language | English |
---|---|
Article number | L022701 |
Pages (from-to) | 1-5 |
Journal | Physical Review E |
Volume | 105 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2022 |