Controls on the Silicon Isotope Composition of Diatoms in the Peruvian Upwelling

Patricia Grasse*, Kristin Haynert, Kristin Doering, Sonja Geilert, Janice L. Jones, Mark A. Brzezinski, Martin Frank

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The upwelling area off Peru is characterized by exceptionally high rates of primary productivity, mainly dominated by diatoms, which require dissolved silicic acid (dSi) to construct their frustules. The silicon isotope compositions of dissolved silicic acid (δ30SidSi) and biogenic silica (δ30SibSi) in the ocean carry information about dSi utilization, dissolution, and water mass mixing. Diatoms are preserved in the underlying sediments and can serve as archives for past nutrient conditions. However, the factors influencing the Si isotope fractionation between diatoms and seawater are not fully understood. More δ30SibSi data in today’s ocean are required to validate and improve the understanding of paleo records. Here, we present the first δ30SibSi data (together with δ30SidSi) from the water column in the Peruvian Upwelling region. Samples were taken under strong upwelling conditions and the bSi collected from seawater consisted of more than 98% diatoms. The δ30SidSi signatures in the surface waters were higher (+1.7‰ to +3.0‰) than δ30SibSi (+1.0‰ to +2‰) with offsets between diatoms and seawater (Δ30Si) ranging from −0.4‰ to −1.0‰. In contrast, δ30SidSi and δ30SibSi signatures were similar in the subsurface waters of the oxygen minimum zone (OMZ) as a consequence of a decrease in δ30SidSi. A strong relationship between δ30SibSi and [dSi] in surface water samples supports that dSi utilization of the available pool (70 and 98%) is the main driver controlling δ30SibSi. A comparison of δ30SibSi samples from the water column and from underlying core-top sediments (δ30SibSi_sed.) in the central upwelling region off Peru (10°S and 15°S) showed good agreement (δ30SibSi_sed. = +0.9‰ to +1.7‰), although we observed small differences in δ30SibSi depending on the diatom size fraction and diatom assemblage. A detailed analysis of the diatom assemblages highlights apparent variability in fractionation among taxa that has to be taken into account when using δ30SibSi data as a paleo proxy for the reconstruction of dSi utilization in the region.

Original languageEnglish
Article number697400
JournalFrontiers in marine science
Volume8
DOIs
Publication statusPublished - 23 Jul 2021

Bibliographical note

Funding Information:
The project was funded by the Sonderforschungsbereich 754 “Climate – Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which was supported by the Deutsche Forschungsgemeinschaft (DFG). MB and JJ were supported by the US National Science Foundation (OCE1233028).

Publisher Copyright:
© Copyright © 2021 Grasse, Haynert, Doering, Geilert, Jones, Brzezinski and Frank.

Funding

The project was funded by the Sonderforschungsbereich 754 “Climate – Biogeochemistry Interactions in the Tropical Ocean” (www.sfb754.de), which was supported by the Deutsche Forschungsgemeinschaft (DFG). MB and JJ were supported by the US National Science Foundation (OCE1233028).

Keywords

  • biogenic silica
  • core-top calibration
  • oxygen minimum zone
  • paleo proxies
  • plankton – taxonomic group/assemblage
  • silicon cycle
  • upwelling region

Fingerprint

Dive into the research topics of 'Controls on the Silicon Isotope Composition of Diatoms in the Peruvian Upwelling'. Together they form a unique fingerprint.

Cite this