TY - JOUR
T1 - Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique
AU - Li, H. B. T.
AU - Franken, R.H.
AU - Stolk, R.L.
AU - van der Werf, C.H.M.
AU - Rath, J.K.
AU - Schropp, R.E.I.
PY - 2008
Y1 - 2008
N2 - Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in the energy conversion efficiency is obtained. Compared to PECVD, the unique characteristics of hot-wire CVD (HWCVD), such as the catalytic reactions, the absence of ion bombardment, the substrate heating by the filaments and filament aging effects, necessitate a different strategy for material and device optimization. We report in this paper the results of using a reverse H2 profiling technique, i.e., increasing the H2 dilution of silane instead of decreasing it, to improve the quality of HWCVD intrinsic nc-Si:H and the performance of this material in single junction n-i-p cells. Thus far, the efficiency of nc-Si:H n-i-p cells made on a stainless steel substrate with an Ag/ZnO textured back reflector has been improved to 8.5%, and the efficiency of triple junction solar cells with a structure of proto-Si:H(HWCVD) top cell/proto-SiGe:H (PECVD) middle cell/nc-Si:H (HWCVD, with reverse H2 profiling) bottom cell has reached 10.9%. These efficiency values show the viability of n-i-p cells comprising HWCVD nanocrystalline i-layers.
AB - Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in the energy conversion efficiency is obtained. Compared to PECVD, the unique characteristics of hot-wire CVD (HWCVD), such as the catalytic reactions, the absence of ion bombardment, the substrate heating by the filaments and filament aging effects, necessitate a different strategy for material and device optimization. We report in this paper the results of using a reverse H2 profiling technique, i.e., increasing the H2 dilution of silane instead of decreasing it, to improve the quality of HWCVD intrinsic nc-Si:H and the performance of this material in single junction n-i-p cells. Thus far, the efficiency of nc-Si:H n-i-p cells made on a stainless steel substrate with an Ag/ZnO textured back reflector has been improved to 8.5%, and the efficiency of triple junction solar cells with a structure of proto-Si:H(HWCVD) top cell/proto-SiGe:H (PECVD) middle cell/nc-Si:H (HWCVD, with reverse H2 profiling) bottom cell has reached 10.9%. These efficiency values show the viability of n-i-p cells comprising HWCVD nanocrystalline i-layers.
M3 - Article
SN - 0022-3093
VL - 354
SP - 2087
EP - 2091
JO - Journal of Non-Crystalline Solids
JF - Journal of Non-Crystalline Solids
IS - 19-25
ER -