Abstract
Data from International Ocean Discovery Program (IODP) Expedition 371 reveal vertical movements of 1-3 km in northern Zealandia during early Cenozoic subduction initiation in the western Pacific Ocean. Lord Howe Rise rose from deep (∼1 km) water to sea level and subsided back, with peak uplift at 50 Ma in the north and between 41 and 32 Ma in the south. The New Caledonia Trough subsided 2-3 km between 55 and 45 Ma. We suggest these elevation changes resulted from crust delamination and mantle flow that led to slab formation. We propose a "subduction resurrection" model in which (1) a subduction rupture event activated lithospheric-scale faults across a broad region during less than ∼5 m.y., and (2) tectonic forces evolved over a further 4-8 m.y. as subducted slabs grew in size and drove plate-motion change. Such a subduction rupture event may have involved nucleation and lateral propagation of slip-weakening rupture along an interconnected set of preexisting weaknesses adjacent to density anomalies.
Original language | English |
---|---|
Pages (from-to) | 419-424 |
Number of pages | 6 |
Journal | Geology |
Volume | 48 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 |
Bibliographical note
Funding Information:We thank the International Ocean Discovery Program (IODP); the personnel of R/V JOIDES Resolution on Expedition 371; proponents unable to sail on Expedition 371; and everyone on surveys TAN1312, TAN1409, and TECTA. This work was funded by the
Funding Information:
We thank the International Ocean Discovery Program (IODP); the personnel of R/V JOIDES Resolution on Expedition 371; proponents unable to sail on Expedition 371; and everyone on surveys TAN1312, TAN1409, and TECTA. This work was funded by the U.S. National Science Foundation; IODP participating countries; New Zealand, France, and New Caledonia (site surveys); the Spanish Ministry of Economy and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds project CGL2017-84693-R and a Leonardo Grant, BBVA Foundation (Alegret); Korean IODP (K-IODP) (Park); China grant NSFC 41473029, 91958110 (He Li); and Brazil grant 183/2017-CII/CGPE/DPB/CAPES (Giorgioni).
Publisher Copyright:
© 2020.
Funding
We thank the International Ocean Discovery Program (IODP); the personnel of R/V JOIDES Resolution on Expedition 371; proponents unable to sail on Expedition 371; and everyone on surveys TAN1312, TAN1409, and TECTA. This work was funded by the We thank the International Ocean Discovery Program (IODP); the personnel of R/V JOIDES Resolution on Expedition 371; proponents unable to sail on Expedition 371; and everyone on surveys TAN1312, TAN1409, and TECTA. This work was funded by the U.S. National Science Foundation; IODP participating countries; New Zealand, France, and New Caledonia (site surveys); the Spanish Ministry of Economy and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds project CGL2017-84693-R and a Leonardo Grant, BBVA Foundation (Alegret); Korean IODP (K-IODP) (Park); China grant NSFC 41473029, 91958110 (He Li); and Brazil grant 183/2017-CII/CGPE/DPB/CAPES (Giorgioni).