Abstract
NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability for this reaction. In this work, we have studied the origin of the SCR activity of Cu-SSZ-13 as evidenced from a combination of synchrotron-based and laboratory techniques. Synchrotron-based in situ XAFS/XRD measurements were used to provide complementary information on the local copper environment under realistic NH3-SCR conditions. Crucial then to the catalytic activity of Cu-SSZ-13 is the local environment of the copper species, particularly in the zeolite. Cu-SSZ-13 contains mononuclear Cu2+ species, located in the face of the double-6-ring subunit of the zeolite after calcination where it remains under reaction conditions. At lower temperatures (with low activity), XAFS and XRD data revealed a conformational change in the local geometry of the copper from a planar form toward a distorted tetrahedron as a result of a preferential interaction with NH3. This process appears necessary for activity, but results in a stymieing of activity at low temperatures. At higher temperatures, the Cu2+ possess a local coordination state akin to that seen after calcination.
Original language | English |
---|---|
Pages (from-to) | 4809-4819 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry C |
Volume | 116 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2012 |