TY - JOUR
T1 - Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces
AU - Armanious, Antonius
AU - Münch, M.A.
AU - Kohn, Tamar
AU - Sander, Michael
PY - 2016/2/22
Y1 - 2016/2/22
N2 - Adsorption onto solid–water interfaces is a key process governing the fate and transport of waterborne viruses. Although negatively charged viruses are known to extensively adsorb onto positively charged adsorbent surfaces, virus adsorption in such systems in the presence of negatively charged dissolved organic matter (DOM) as coadsorbate remains poorly studied and understood. This work provides a systematic assessment of the adsorption dynamics of negatively charged viruses (i.e., bacteriophages MS2, fr, GA, and Qβ) and polystyrene nanospheres onto a positively charged model sorbent surface in the presence of varying DOM concentrations. In all systems studied, DOM competitively suppressed the adsorption of the viruses and nanospheres onto the model surface. Electrostatic repulsion of the highly negatively charged MS2, fr, and the nanospheres impaired their adsorption onto DOM adlayers that formed during the coadsorption process. In contrast, the effect of competition on overall adsorption was attenuated for less-negatively charged GA and Qβ because these viruses also adsorbed onto DOM adlayer surfaces. Competition in MS2–DOM coadsorbate systems were accurately described by a random sequential adsorption model that explicitly accounts for the unfolding of adsorbed DOM. Consistent findings for viruses and nanospheres suggest that the coadsorbate effects described herein generally apply to systems containing negatively charged nanoparticles and DOM.
AB - Adsorption onto solid–water interfaces is a key process governing the fate and transport of waterborne viruses. Although negatively charged viruses are known to extensively adsorb onto positively charged adsorbent surfaces, virus adsorption in such systems in the presence of negatively charged dissolved organic matter (DOM) as coadsorbate remains poorly studied and understood. This work provides a systematic assessment of the adsorption dynamics of negatively charged viruses (i.e., bacteriophages MS2, fr, GA, and Qβ) and polystyrene nanospheres onto a positively charged model sorbent surface in the presence of varying DOM concentrations. In all systems studied, DOM competitively suppressed the adsorption of the viruses and nanospheres onto the model surface. Electrostatic repulsion of the highly negatively charged MS2, fr, and the nanospheres impaired their adsorption onto DOM adlayers that formed during the coadsorption process. In contrast, the effect of competition on overall adsorption was attenuated for less-negatively charged GA and Qβ because these viruses also adsorbed onto DOM adlayer surfaces. Competition in MS2–DOM coadsorbate systems were accurately described by a random sequential adsorption model that explicitly accounts for the unfolding of adsorbed DOM. Consistent findings for viruses and nanospheres suggest that the coadsorbate effects described herein generally apply to systems containing negatively charged nanoparticles and DOM.
U2 - 10.1021/acs.est.5b05726
DO - 10.1021/acs.est.5b05726
M3 - Article
SN - 0013-936X
VL - 50
SP - 3597
EP - 3606
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 7
M1 - 7
ER -