TY - JOUR
T1 - Comparison of the neurotoxic potency of different ultrafine particle fractions from diesel engine exhaust following direct and simulated inhalation exposure
AU - Gerber, Lora-Sophie
AU - de Leijer, Dirk C A
AU - Arranz, Andrea Rujas
AU - Lehmann, Jonas M M L
AU - Verheul, Meike E
AU - Cassee, Flemming R
AU - Westerink, Remco H S
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/8/15
Y1 - 2024/8/15
N2 - Exposure to traffic-related air pollution and ultrafine particles (<100 μm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.
AB - Exposure to traffic-related air pollution and ultrafine particles (<100 μm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.
KW - Air pollution
KW - Diesel engine emission
KW - Inhalation exposure
KW - Microelectrode array (MEA) recordings
KW - Neurotoxic hazard characterization
KW - Semi-volatile organic compounds
UR - http://www.scopus.com/inward/record.url?scp=85201257269&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.175469
DO - 10.1016/j.scitotenv.2024.175469
M3 - Article
C2 - 39153615
SN - 0048-9697
VL - 951
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 175469
ER -