Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment

Peng Zhao, Rosa Viner, Chin Fen Teo, Geert-Jan Boons, David Horn, Lance Wells

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Mass spectrometry-based studies of proteins that are post-translationally modified by O-linked β-N-acetylglucosamine (O-GlcNAc) are challenged in effectively identifying the sites of modification while simultaneously sequencing the peptides. Here we tested the hypothesis that a combination of high-energy C-trap dissociation (HCD) and electron transfer dissociation (ETD) could specifically target the O-GlcNAc modified peptides and elucidate the amino acid sequence while preserving the attached GlcNAc residue for accurate site assignment. By taking advantage of the recently characterized O-GlcNAc-specific IgG monoclonal antibodies and the combination of HCD and ETD fragmentation techniques, O-GlcNAc modified proteins were enriched from HEK293T cells and subsequently characterized using the LTQ Orbitrap Velos ETD (Thermo Fisher Scientific) mass spectrometer. In our data set, 83 sites of O-GlcNAc modification are reported with high confidence confirming that the HCD/ETD combined approach is amenable to the detection and site assignment of O-GlcNAc modified peptides. Realizing HCD triggered ETD fragmentation on a linear ion trap/Orbitrap platform for more in-depth analysis and application of this technique to other post-translationally modified proteins are currently underway. Furthermore, this report illustrates that the O-GlcNAc transferase appears to demonstrate promiscuity with regards to the hydroxyl-containing amino acid modified in short stretches of primary sequence of the glycosylated polypeptides.

Original languageEnglish
Pages (from-to)4088-104
Number of pages17
JournalJournal of Proteome Research
Volume10
Issue number9
DOIs
Publication statusPublished - 2 Sept 2011
Externally publishedYes

Keywords

  • Acetylglucosamine
  • Amino Acid Sequence
  • Antibodies, Monoclonal
  • Glycosylation
  • HEK293 Cells
  • Humans
  • Molecular Sequence Data
  • Peptide Fragments
  • Protein Processing, Post-Translational
  • Proteomics
  • Tandem Mass Spectrometry

Fingerprint

Dive into the research topics of 'Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment'. Together they form a unique fingerprint.

Cite this