TY - JOUR
T1 - Coadministration of ABCB1/P-glycoprotein inhibitor elacridar improves tissue distribution of ritonavir-boosted oral cabazitaxel in mice
AU - Loos, NHC
AU - Martins, MLF
AU - de Jong, D
AU - Lebre, MC
AU - Tibben, Matthijs
AU - Beijnen, JH
AU - Schinkel, Alfred H
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/25
Y1 - 2024/1/25
N2 - Developing an oral formulation for the chemotherapeutic cabazitaxel might improve its patient-friendliness, costs, and potentially exposure profile. Cabazitaxel oral availability is restricted by CYP3A-mediated first-pass metabolism, but can be substantially boosted with the CYP3A inhibitor ritonavir. We here tested whether adding the ABCB1/P-glycoprotein inhibitor elacridar to ritonavir-boosted oral cabazitaxel could further improve its tissue exposure using wild-type, CYP3A4-humanized and Abcb1a/b-/- mice. The plasma AUC0-2h of cabazitaxel was increased 2.3- and 1.9-fold in the ritonavir- and ritonavir-plus-elacridar groups of wild-type, and 10.5- and 8.8-fold in CYP3A4-humanized mice. Elacridar coadministration did not influence cabazitaxel plasma exposure. The brain-to-plasma ratio of cabazitaxel was not increased in the ritonavir group, 7.3-fold in the elacridar group and 13.4-fold in the combined booster group in wild-type mice. This was 0.4-, 4.6- and 3.6-fold in CYP3A4-humanized mice, illustrating that Abcb1 limited cabazitaxel brain exposure also during ritonavir boosting. Ritonavir itself was also a potent substrate for the Abcb1 efflux transporter, limiting its oral availability (3.3-fold) and brain penetration (10.6-fold). Both processes were fully reversed by elacridar. The tissue disposition of ritonavir-boosted oral cabazitaxel could thus be markedly enhanced by elacridar coadministration without affecting the plasma exposure. This approach should be verified in selected patient populations.
AB - Developing an oral formulation for the chemotherapeutic cabazitaxel might improve its patient-friendliness, costs, and potentially exposure profile. Cabazitaxel oral availability is restricted by CYP3A-mediated first-pass metabolism, but can be substantially boosted with the CYP3A inhibitor ritonavir. We here tested whether adding the ABCB1/P-glycoprotein inhibitor elacridar to ritonavir-boosted oral cabazitaxel could further improve its tissue exposure using wild-type, CYP3A4-humanized and Abcb1a/b-/- mice. The plasma AUC0-2h of cabazitaxel was increased 2.3- and 1.9-fold in the ritonavir- and ritonavir-plus-elacridar groups of wild-type, and 10.5- and 8.8-fold in CYP3A4-humanized mice. Elacridar coadministration did not influence cabazitaxel plasma exposure. The brain-to-plasma ratio of cabazitaxel was not increased in the ritonavir group, 7.3-fold in the elacridar group and 13.4-fold in the combined booster group in wild-type mice. This was 0.4-, 4.6- and 3.6-fold in CYP3A4-humanized mice, illustrating that Abcb1 limited cabazitaxel brain exposure also during ritonavir boosting. Ritonavir itself was also a potent substrate for the Abcb1 efflux transporter, limiting its oral availability (3.3-fold) and brain penetration (10.6-fold). Both processes were fully reversed by elacridar. The tissue disposition of ritonavir-boosted oral cabazitaxel could thus be markedly enhanced by elacridar coadministration without affecting the plasma exposure. This approach should be verified in selected patient populations.
KW - Cabazitaxel/Jevtana
KW - Elacridar
KW - P-glycoprotein (P-gp/ABCB1)
KW - Pharmacokinetics
KW - Ritonavir
KW - Cytochrome P450 3A (CYP3A4)
KW - Cabazitaxel (PubChem CID 9854073)
KW - Ritonavir (PubChem CID 392622)
KW - Elacridar (PubChem CID 119373)
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=d7dz6a2i7wiom976oc9ff2iqvdhv8k5x&SrcAuth=WosAPI&KeyUT=WOS:001149856500001&DestLinkType=FullRecord&DestApp=WOS_CPL
UR - http://www.scopus.com/inward/record.url?scp=85181121852&partnerID=8YFLogxK
U2 - 10.1016/j.ijpharm.2023.123708
DO - 10.1016/j.ijpharm.2023.123708
M3 - Article
C2 - 38135258
SN - 0378-5173
VL - 650
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
M1 - 123708
ER -