TY - JOUR
T1 - Co-evolution of network structure and consumer inequality in a spatially explicit model of energetic resource acquisition
AU - Davis, Natalie
AU - Jarvis, Andrew
AU - Polhill, J. Gareth
N1 - Funding Information:
Funding was provided by a joint Lancaster University/The James Hutton Institute, UK Ph.D. studentship to ND. The authors acknowledge useful comments from two anonymous reviewers, which helped sharpen the manuscript, and the efforts of the editor, Dr Michael Small, in finding said reviewers. In addition, ND acknowledges statistical advice from Dr Vicki Davis and discussions on the modelling framework with Dr Kirsti Ashworth, as well as feedback on model and experimental design from Dr Nanda Wijermans and Dr Émile Chappin at ESSA@work during Social Simulation Week 2020. The authors also acknowledge the Research/Scientific Computing teams at The James Hutton Institute and NIAB for providing computational resources and enduringly patient technical support for the “UK’s Crop Diversity Bioinformatics HPC” ( BBSRC, UK grant BB/S019669/1 ) and the James Hutton Institute computing cluster, which were used to run the simulations reported within this paper. GP is grateful for funding from the Scottish Government’s Strategic Research Programme, UK 2022–27 (project JHI-C5-1 ).
Funding Information:
Funding was provided by a joint Lancaster University/The James Hutton Institute, UK Ph.D. studentship to ND. The authors acknowledge useful comments from two anonymous reviewers, which helped sharpen the manuscript, and the efforts of the editor, Dr Michael Small, in finding said reviewers. In addition, ND acknowledges statistical advice from Dr Vicki Davis and discussions on the modelling framework with Dr Kirsti Ashworth, as well as feedback on model and experimental design from Dr Nanda Wijermans and Dr Émile Chappin at ESSA@work during Social Simulation Week 2020. The authors also acknowledge the Research/Scientific Computing teams at The James Hutton Institute and NIAB for providing computational resources and enduringly patient technical support for the “UK's Crop Diversity Bioinformatics HPC” (BBSRC, UK grant BB/S019669/1) and the James Hutton Institute computing cluster, which were used to run the simulations reported within this paper. GP is grateful for funding from the Scottish Government's Strategic Research Programme, UK 2022–27 (project JHI-C5-1).
Publisher Copyright:
© 2022 The Authors
PY - 2022/12/15
Y1 - 2022/12/15
N2 - Energetic resources in ecological and social–ecological systems are distributed through complex networks, which co-evolve with the system and consumers to move resources from points of origin to those of end use. Past research has focused on effects of spatiotemporal resource heterogeneity in ecosystems and society, or socioeconomic drivers of inequality, with less attention to interactions between resource network structure and population-level outcomes. Here, we develop a spatially explicit, stock-flow consistent agent-based model of generic consumers building and crossing links between resources, and we explore the co-evolution of the emergent network structure and inequality in consumers’ resource reserves across three distinct landscapes. We show that the consumer inequality initially decreased during network expansion, then increased rapidly as the network reached a more stable state. The spatial distribution of resources in each of the three landscapes constrained the structures that could emerge, and therefore the specific rates and timings of these dynamics. This work demonstrates the use of energetically consistent modelling to understand possible relationships among a spatially distributed set of resources, the network structure that connects them to a population, and inequality in that population. This can provide a theoretical underpinning informing further work to better understand causes of resource inequality and heterogeneity in observed systems.
AB - Energetic resources in ecological and social–ecological systems are distributed through complex networks, which co-evolve with the system and consumers to move resources from points of origin to those of end use. Past research has focused on effects of spatiotemporal resource heterogeneity in ecosystems and society, or socioeconomic drivers of inequality, with less attention to interactions between resource network structure and population-level outcomes. Here, we develop a spatially explicit, stock-flow consistent agent-based model of generic consumers building and crossing links between resources, and we explore the co-evolution of the emergent network structure and inequality in consumers’ resource reserves across three distinct landscapes. We show that the consumer inequality initially decreased during network expansion, then increased rapidly as the network reached a more stable state. The spatial distribution of resources in each of the three landscapes constrained the structures that could emerge, and therefore the specific rates and timings of these dynamics. This work demonstrates the use of energetically consistent modelling to understand possible relationships among a spatially distributed set of resources, the network structure that connects them to a population, and inequality in that population. This can provide a theoretical underpinning informing further work to better understand causes of resource inequality and heterogeneity in observed systems.
KW - Resource network development
KW - Resource inequality
KW - Environmental heterogeneity
KW - Flow consistent
KW - Social–ecological systems
KW - Agent-based model
UR - http://www.scopus.com/inward/record.url?scp=85141560826&partnerID=8YFLogxK
U2 - 10.1016/j.physa.2022.128261
DO - 10.1016/j.physa.2022.128261
M3 - Article
SN - 0378-4371
VL - 608
JO - Physica A: Statistical Mechanics and its Applications
JF - Physica A: Statistical Mechanics and its Applications
IS - 1
M1 - 128261
ER -