Climate change impacts on the energy system: A model comparison

Victhalia Zapata*, David E.H.J. Gernaat, Seleshi G. Yalew*, Silvia R. Santos Da Silva, Gokul Iyer, Mohamad Hejazi, Detlef P. Van Vuuren

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Increasing renewable energy use is an essential strategy for mitigating climate change. Nevertheless, the sensitivity of renewable energy to climatic conditions means that the energy system's vulnerability to climate change can also become larger. In this research, we used two integrated assessment models and data from four climate models to analyse climate change impacts on primary energy use at a global and regional scale under a low-level (RCP2.6) and a medium-level (RCP6.0) climate change scenario. The impacts are analysed on the energy system focusing on four renewable sources (wind, solar, hydropower, and biomass). Globally, small climate impacts on renewable primary energy use are found in both models (5% for RCP2.6 and 6% for RCP6.0). These impacts lead to a decrease in the use of fossil sources for most regions, especially for North America and Europe under the RCP60 scenario. Overall, IMAGE and GCAM provide a similar signal impact response for most regions. E.g. in Asia (excluding China and India), climate change induces an increase in wind and hydropower use under the RCP6.0 scenarios; however, for India, a decrease in solar energy use can be expected under both scenarios and models.

Original languageEnglish
Article number034036
Pages (from-to)1-20
JournalEnvironmental Research Letters
Volume17
Issue number3
DOIs
Publication statusPublished - Mar 2022

Keywords

  • climate impacts
  • energy models, RCP2.6, RCP6.0
  • energy systems
  • renewable energies
  • SSP2

Fingerprint

Dive into the research topics of 'Climate change impacts on the energy system: A model comparison'. Together they form a unique fingerprint.

Cite this