TY - UNPB
T1 - CIBRA identifies genomic alterations with a system-wide impact on tumor biology
AU - Lakbir, Soufyan
AU - Buranelli, Caterina
AU - Meijer, Gerrit A.
AU - Heringa, Jaap
AU - Fijneman, Remond J. A.
AU - Abeln, Sanne
N1 - 22 pages, 9 figures
PY - 2024/3/6
Y1 - 2024/3/6
N2 - Background: Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g., genomics), and another defining a system-wide expression response (e.g., transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results: We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes. Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely underreported. Additionally, CIBRA can identify impact with only ten cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Conclusions: Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA
AB - Background: Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g., genomics), and another defining a system-wide expression response (e.g., transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results: We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes. Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely underreported. Additionally, CIBRA can identify impact with only ten cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Conclusions: Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA
KW - q-bio.GN
KW - q-bio.QM
U2 - 10.48550/arXiv.2403.03829
DO - 10.48550/arXiv.2403.03829
M3 - Preprint
BT - CIBRA identifies genomic alterations with a system-wide impact on tumor biology
PB - arXiv
ER -