TY - JOUR
T1 - Choosing the polarity of the phase-encoding direction in diffusion MRI
T2 - Does it matter for group analysis?
AU - Kennis, M
AU - van Rooij, S J H
AU - Kahn, R S
AU - Geuze, E
AU - Leemans, A
PY - 2016
Y1 - 2016
N2 - Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically - e.g., by reversing the polarity of the phase-encoding (PE) direction - this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction.
AB - Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically - e.g., by reversing the polarity of the phase-encoding (PE) direction - this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction.
KW - Diffusion Tensor Imaging
KW - PTSD
KW - MRI
KW - Methodology
U2 - 10.1016/j.nicl.2016.03.022
DO - 10.1016/j.nicl.2016.03.022
M3 - Article
C2 - 27158586
SN - 2213-1582
VL - 11
SP - 539
EP - 547
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
ER -