TY - JOUR
T1 - Charge Carrier Dynamics upon Sub-bandgap Excitation in Methylammonium Lead Iodide Thin Films
T2 - Effects of Urbach Tail, Deep Defects, and Two-Photon Absorption
AU - Caselli, Valentina M.
AU - Wei, Zimu
AU - Ackermans, Marnix M.
AU - Hutter, Eline M.
AU - Ehrler, Bruno
AU - Savenije, Tom J.
PY - 2020/11/13
Y1 - 2020/11/13
N2 - To further understand the optoelectronic properties of metal halide perovskites, we investigate sub-bandgap absorption in methylammonium lead iodide (MAPbI3) films. Charge carrier dynamics are studied using time-resolved microwave conductivity measurements using sub-bandgap excitation. From changes in the decay dynamics as a function of excitation energy and intensity, we have identified three regimes: (i) Band-like charge transport at photon energies above 1.48 eV; (ii) a transitional regime between 1.48 and 1.40 eV; and (iii) below 1.40 eV localized optically active defects (8 × 1013 cm-3) dominate the absorption at low intensities, while two-photon absorption is observed at high intensities. We determined an Urbach energy of approximately 11.3 meV, indicative of a low structural and/or thermal disorder. Surprisingly, even excitation 120 meV below the bandgap leads to efficient charge transfer into electron (C60) or hole (spiro-OMeTAD) transport layers. Therefore, we conclude that for MAPbI3, the band tail states do not lead to nonradiative losses.
AB - To further understand the optoelectronic properties of metal halide perovskites, we investigate sub-bandgap absorption in methylammonium lead iodide (MAPbI3) films. Charge carrier dynamics are studied using time-resolved microwave conductivity measurements using sub-bandgap excitation. From changes in the decay dynamics as a function of excitation energy and intensity, we have identified three regimes: (i) Band-like charge transport at photon energies above 1.48 eV; (ii) a transitional regime between 1.48 and 1.40 eV; and (iii) below 1.40 eV localized optically active defects (8 × 1013 cm-3) dominate the absorption at low intensities, while two-photon absorption is observed at high intensities. We determined an Urbach energy of approximately 11.3 meV, indicative of a low structural and/or thermal disorder. Surprisingly, even excitation 120 meV below the bandgap leads to efficient charge transfer into electron (C60) or hole (spiro-OMeTAD) transport layers. Therefore, we conclude that for MAPbI3, the band tail states do not lead to nonradiative losses.
UR - http://www.scopus.com/inward/record.url?scp=85096722651&partnerID=8YFLogxK
U2 - 10.1021/acsenergylett.0c02067
DO - 10.1021/acsenergylett.0c02067
M3 - Article
AN - SCOPUS:85096722651
SN - 2380-8195
VL - 5
SP - 3821
EP - 3827
JO - ACS Energy Letters
JF - ACS Energy Letters
IS - 12
ER -