Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain

Marina Mikhaylova, A. Karpova, J. Bär, P. Bethge, P. Yuanxiang, Yinan Chen, W. Zuschratter, T. Behnisch, M.R. Kreutz

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In previous work, we found that the protein messenger Jacob is involved in N-methyl-d-aspartate receptor (NMDAR) signaling to the nucleus and cAMP response element-binding protein (CREB) mediated gene expression in hippocampal primary neurons. Particularly, extrasynaptic NMDAR activation drives Jacob efficiently into the nucleus where it then induces gene expression that promotes neurodegeneration. However, the protein also translocates to the nucleus in CA1 neurons after Schaffer collateral long-term potentiation (LTP) but not long-term depression (LTD), suggesting that Jacob might be involved in hippocampal and LTP-dependent learning and memory processes. Not much is known about the cellular and subcellular distribution of the protein in brain. In this paper, we provide an overview of the expression of Jacob in rat brain with special emphasis on the hippocampus. We show that Jacob is abundant in hippocampal pyramidal neurons and interneurons but absent from astrocytes and microglia. Interestingly, we found that Jacob is also present in mossy fiber axons. Double immunofluorescence confocal laser scans with presynaptic markers demonstrate that Jacob is indeed found at excitatory but not inhibitory presynaptic sites. Accordingly, we found no substantial co-localization of Jacob with a postsynaptic marker of inhibitory synapses, gephyrin. In contrast, almost all postsynaptic density protein 95 (PSD-95) positive excitatory postsynaptic sites also exhibited strong Jacob-immunofluorescence. Taken together, these data support a synaptic and nuclear role of Jacob that implicates long-distance NMDAR signaling to the nucleus in excitatory neurons.
Original languageEnglish
Pages (from-to)843-860
JournalBrain Structure & Function
Volume219
Issue number3
DOIs
Publication statusPublished - Mar 2014

Keywords

  • Jacob
  • Synapse-to-nucleus signaling
  • NELF
  • NMDA receptor
  • Postsynaptic density
  • Synaptic plasticity
  • Excitatory and inhibitory synapses
  • STED microscopy

Fingerprint

Dive into the research topics of 'Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain'. Together they form a unique fingerprint.

Cite this