Can sand nourishment material affect dune vegetation through nutrient addition?

Iris R. Pit*, Martin J. Wassen, Annemieke M. Kooijman, Stefan C. Dekker, Jasper Griffioen, Sebastiaan M. Arens, Jerry van Dijk

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In the Netherlands it is common to nourish the coastline with sand from the seabed. Foredunes are replenished with sand from the beach and can be transported further into the dune area. We investigated whether nourishment material alters the phosphorus (P) content of dune soil and the nitrogen (N):P ratio of dune vegetation in two areas: a mega sand nourishment with fixed foredunes (SE) and a traditional sand nourishment with dynamic foredunes (NWC). Four zones were considered: beach (zone 1), frontal foredunes (zone 2), foredunes crest (zone 3) and inner dunes (zone 4). We estimated the characteristics of fine (< 250-μm) and coarse (250–2000 μm) sand. Total P, P speciation and available P of SE and NWC were similar until zone 4. Zone 1–3 consisted mainly of coarse sand, whereas the sand in zone 4 was finer with higher amounts at NWC. Iron (Fe) bound P was comparable for fine and coarse sand in zone 1–3, but high contents were present in zone 4. In zone 1–3, calcium (Ca) bound P was mainly found in the fine fraction, which was abundant in the coarse fraction of zone 4. After a period of 4 years, the effect of dynamic dunes on P fractions and dune plant species was not apparent yet, although inblowing sand mainly consisted of fine sand with high contents of Ca-bound P. This may change over time, especially in dynamic dunes with higher eolian activity of fine sand. Consequently, pH buffering of the soil may increase because of a higher Ca‑carbonate content, which leads to decreased solubility of Ca-bound P and low P availability for the vegetation. Both low P availability and high buffering capacity are known environmental factors that facilitate endangered dune plant species.

Original languageEnglish
Article number138233
Number of pages13
JournalScience of the Total Environment
Volume725
DOIs
Publication statusPublished - 10 Jul 2020

Keywords

  • Beach
  • Dynamic foredunes
  • Geochemical characteristics
  • P availability
  • P speciation
  • Sand engine

Fingerprint

Dive into the research topics of 'Can sand nourishment material affect dune vegetation through nutrient addition?'. Together they form a unique fingerprint.

Cite this