TY - JOUR
T1 - Bisecting N-Acetylglucosamine of the N-Glycan of Immunoglobulin G Does Not Affect Binding to Fc Gamma Receptors
AU - Bosman, Gerlof P.
AU - Stoof, Inèz D.
AU - Bastiaansen, Hans P.
AU - Quarles van Ufford, Linda
AU - Dobruchowska, Justyna M.
AU - Langenbach, Jan Willem H.
AU - Boruah, Bhargavi M.
AU - Moremen, Kelley W.
AU - Bentlage, Arthur E.H.
AU - Lissenberg-Thunnissen, Suzanne N.
AU - Vidarsson, Gestur
AU - Boons, Geert Jan
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025/3/21
Y1 - 2025/3/21
N2 - Monoclonal antibodies (mAb) produced in 1,4-mannosyl-glycoprotein 4-N-acetylglucosaminyltransferase (MGAT3) overexpressing cell lines have superior in vitro and in vivo activities. The N-glycan of the Fc-region of these mAbs have increased levels of bisecting N-acetylglucosamine (GlcNAc) and reduced core-fucosylation. Although a reduction in core-fucosylation will improve FcγRIIIa binding and antibody-dependent cellular cytotoxicity (ADCC) activity, the influence of bisecting GlcNAc on these activities has been difficult to probe. Here, we describe the preparation of a unique series of homogeneous glycoforms of trastuzumab (Herceptin) with and without core-fucose and with and without bisecting GlcNAc and examine binding to a comprehensive panel of Fcγ receptors. The glycoforms of trastuzumab were prepared by treatment with wild-type Endo-S2 to cleave the chitobiose core of the N-glycan to leave GlcNAc-Fuc that was exposed to an α-fucosidase to provide trastuzumab-GlcNAc. Glycan oxazolines with and without bisecting GlcNAc were prepared by enzymatic remodeling of a sialoglycopeptide isolated from egg yolk powder, which were employed in transglycosylations with trastuzumab-GlcNAc and trastuzumab-GlcNAc-Fuc catalyzed by Endo-S2 D184M resulting in well-defined glycoforms. As expected, core-fucosylation had a major effect on FcγRIIIa binding, which was not influenced by the presence of bisecting GlcNAc. It was found that an A2-glycan (GlcNAc2Man3GlcNAc2) modified by bisecting GlcNAc cannot be core-fucosylated by FUT8. Thus, bisecting GlcNAc has only an indirect influence on FcγRIIIa binding and subsequent ADCC activity by inhibiting core-fucosylation. The results described here provide an understanding of the properties of therapeutic monoclonal antibodies.
AB - Monoclonal antibodies (mAb) produced in 1,4-mannosyl-glycoprotein 4-N-acetylglucosaminyltransferase (MGAT3) overexpressing cell lines have superior in vitro and in vivo activities. The N-glycan of the Fc-region of these mAbs have increased levels of bisecting N-acetylglucosamine (GlcNAc) and reduced core-fucosylation. Although a reduction in core-fucosylation will improve FcγRIIIa binding and antibody-dependent cellular cytotoxicity (ADCC) activity, the influence of bisecting GlcNAc on these activities has been difficult to probe. Here, we describe the preparation of a unique series of homogeneous glycoforms of trastuzumab (Herceptin) with and without core-fucose and with and without bisecting GlcNAc and examine binding to a comprehensive panel of Fcγ receptors. The glycoforms of trastuzumab were prepared by treatment with wild-type Endo-S2 to cleave the chitobiose core of the N-glycan to leave GlcNAc-Fuc that was exposed to an α-fucosidase to provide trastuzumab-GlcNAc. Glycan oxazolines with and without bisecting GlcNAc were prepared by enzymatic remodeling of a sialoglycopeptide isolated from egg yolk powder, which were employed in transglycosylations with trastuzumab-GlcNAc and trastuzumab-GlcNAc-Fuc catalyzed by Endo-S2 D184M resulting in well-defined glycoforms. As expected, core-fucosylation had a major effect on FcγRIIIa binding, which was not influenced by the presence of bisecting GlcNAc. It was found that an A2-glycan (GlcNAc2Man3GlcNAc2) modified by bisecting GlcNAc cannot be core-fucosylated by FUT8. Thus, bisecting GlcNAc has only an indirect influence on FcγRIIIa binding and subsequent ADCC activity by inhibiting core-fucosylation. The results described here provide an understanding of the properties of therapeutic monoclonal antibodies.
UR - http://www.scopus.com/inward/record.url?scp=85218134972&partnerID=8YFLogxK
U2 - 10.1021/acschembio.4c00807
DO - 10.1021/acschembio.4c00807
M3 - Article
C2 - 39970331
AN - SCOPUS:85218134972
SN - 1554-8929
VL - 20
SP - 680
EP - 689
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 3
ER -