Biofunctionalization of polymeric surfaces

Miguel A. Mateos-Timoneda*, Riccardo Levato, Xavier Punet, Irene Cano, Oscar Castano, Elisabeth Engel

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Most of the synthetic polymeric biomaterials used for biomedical applications lack of functional groups able to specifically instruct cells to unlock their potential for tissue regeneration. Surface modification strategies are able to overcome this limitation by introducing bioactive cues. In this study, several functionalization approaches are analyzed. Wet chemical methods such as controlled hydrolysis of polyesters followed by biomolecules grafting by carbodiimide chemistry are simple and versatile approaches, able to succesfully improve the bioactivity of devices with virtually any architecture. Grafting of short peptides, extracellular matrix proteins (ECM) or engineered protein-like recombinamers are promising techniques to improve cell adhesion to biomaterials, including polylactic acid (PLA) and its derivatives. ECM molecules and recombinamers can present more effectively bioactive signals, even in presence of competing, nonadhesive serum proteins. Besides adhesion, surface modifications intended to improve cell attachment, play a role on other cell responses, such as migratory potential. Collagen coating were shown to enhance the expression of the migratory receptor CXCR4 in mesenchymal stromal cells, when compared to short RGD peptides, while the modality of functionalization (covalent vs. physisorbed) tuned the rate of cell migration from PLA-based microcarriers. This multiple effects have to be taken into account when designing biomaterials for cell delivery and tissue engineering. Furthermore, as we aim to recapitulate in vitro the complexity of native tissues, alternative strategies based on the generation of decellularized polymer scaffold rich in cell-deposited ECM are proposed.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherIEEE
Pages1745-1748
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - 4 Nov 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Fingerprint

Dive into the research topics of 'Biofunctionalization of polymeric surfaces'. Together they form a unique fingerprint.

Cite this