Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change

Wouter Vandenbruwaene*, Tjeerd J. Bouma, Patrick Meire, Stijn Temmerman

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The long-term (10-100years) evolution of tidal channels is generally considered to interact with the bio-geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low-elevated bare tidal flat towards a high-elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction.

Original languageEnglish
Pages (from-to)122-132
Number of pages11
JournalEarth Surface Processes and Landforms
Volume38
Issue number2
DOIs
Publication statusPublished - Feb 2013

Keywords

  • Bio-geomorphology
  • Tidal channel evolution
  • Tidal flats
  • Tidal marshes
  • Tidal prism
  • Vegetation

Fingerprint

Dive into the research topics of 'Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change'. Together they form a unique fingerprint.

Cite this