Binary icosahedral clusters of hard spheres in spherical confinement

Da Wang, Tonnishtha Dasgupta, Ernest B. van der Wee, Daniele Zanaga, Thomas Altantzis, Yaoting Wu, Gabriele M. Coli, Christopher B. Murray, Sara Bals, Marjolein Dijkstra*, Alfons van Blaaderen*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn2 Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70–80% of the particles became similar to that of the MgCu2 Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization.

Original languageEnglish
Pages (from-to)128-134
Number of pages7
JournalNature Physics
Volume17
Issue number1
DOIs
Publication statusPublished - 31 Aug 2020

Funding

D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M.D. acknowledge financial support from the Industrial Partnership Programme, ‘Computational Sciences for Energy Research’ (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes.

Keywords

  • Colloids
  • Nanoparticles
  • Self-assembly
  • Statistical physics
  • Transmission electron microscopy

Fingerprint

Dive into the research topics of 'Binary icosahedral clusters of hard spheres in spherical confinement'. Together they form a unique fingerprint.

Cite this