Abstract
We study integrable deformations of two-dimensional non-linear sigma-models and present a new class of classical solutions to critical bi-Yang-Baxter models for general groups. For the simplest example, namely the SL(2,R) bi-Yang-Baxter model, we show that our solutions can be mapped to the known complex uniton solutions of the SU(2) bi-Yang-Baxter model. In general, our solutions are constructed from so-called Sl(2)-orbits that play a central role in the study of asymptotic Hodge theory. This provides further evidence for a close relation between integrable non-linear sigma-models and the mathematical principles underlying Hodge theory. We have also included a basic introduction to the relevant aspects of asymptotic Hodge theory and have provided some simple examples.
Original language | English |
---|---|
Publisher | arXiv |
Pages | 1-35 |
DOIs | |
Publication status | Published - 7 Dec 2022 |
Keywords
- hep-th