TY - JOUR
T1 - Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1- xSbxBr6 Halide Double Perovskites
AU - Hutter, Eline M.
AU - Gélvez-Rueda, María C.
AU - Bartesaghi, Davide
AU - Grozema, Ferdinand C.
AU - Savenije, Tom J.
PY - 2018/9/30
Y1 - 2018/9/30
N2 - Recently, halide double perovskites (HDPs), such as Cs2AgBiBr6, have been reported as promising nontoxic alternatives to lead halide perovskites. However, it remains unclear whether the charge-transport properties of these materials are as favorable as for lead-based perovskites. In this work, we study the mobilities of charges in Cs2AgBiBr6 and in mixed antimony-bismuth Cs2AgBi1-xSbxBr6, in which the band gap is tunable from 2.0 to 1.6 eV. Using temperature-dependent time-resolved microwave conductivity techniques, we find that the mobility is proportional to T-p (with p ≈ 1.5). Importantly, this indicates that phonon scattering is the dominant scattering mechanism determining the charge carrier mobility in these HDPs similar to the state-of-the-art lead-based perovskites. Finally, we show that wet chemical processing of Cs2AgBi1-xSbxBr6 powders is a successful route to prepare thin films of these materials, which paves the way toward photovoltaic devices based on nontoxic HDPs with tunable band gaps.
AB - Recently, halide double perovskites (HDPs), such as Cs2AgBiBr6, have been reported as promising nontoxic alternatives to lead halide perovskites. However, it remains unclear whether the charge-transport properties of these materials are as favorable as for lead-based perovskites. In this work, we study the mobilities of charges in Cs2AgBiBr6 and in mixed antimony-bismuth Cs2AgBi1-xSbxBr6, in which the band gap is tunable from 2.0 to 1.6 eV. Using temperature-dependent time-resolved microwave conductivity techniques, we find that the mobility is proportional to T-p (with p ≈ 1.5). Importantly, this indicates that phonon scattering is the dominant scattering mechanism determining the charge carrier mobility in these HDPs similar to the state-of-the-art lead-based perovskites. Finally, we show that wet chemical processing of Cs2AgBi1-xSbxBr6 powders is a successful route to prepare thin films of these materials, which paves the way toward photovoltaic devices based on nontoxic HDPs with tunable band gaps.
UR - http://www.scopus.com/inward/record.url?scp=85053932470&partnerID=8YFLogxK
U2 - 10.1021/acsomega.8b01705
DO - 10.1021/acsomega.8b01705
M3 - Article
AN - SCOPUS:85053932470
SN - 2470-1343
VL - 3
SP - 11655
EP - 11662
JO - ACS Omega
JF - ACS Omega
IS - 9
ER -