TY - JOUR
T1 - Autoantigen-dexamethasone Conjugate-Loaded Liposomes Halt Arthritis Development in Mice
AU - Benne, Naomi
AU - Braake, Daniëlle Ter
AU - Porenta, Deja
AU - Lau, Chun Yin Jerry
AU - Mastrobattista, Enrico
AU - Broere, Femke
N1 - Publisher Copyright:
© 2024 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
PY - 2024/5/7
Y1 - 2024/5/7
N2 - There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
AB - There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
KW - autoimmunity
KW - dexamethasone
KW - immunotherapy
KW - liposomes
KW - rheumatoid arthritis
UR - http://www.scopus.com/inward/record.url?scp=85184499692&partnerID=8YFLogxK
U2 - 10.1002/adhm.202304238
DO - 10.1002/adhm.202304238
M3 - Article
C2 - 38295848
SN - 2192-2640
VL - 13
JO - Advanced healthcare materials
JF - Advanced healthcare materials
IS - 12
M1 - 2304238
ER -