TY - GEN
T1 - Another Hamiltonian Cycle in Bipartite Pfaffian Graphs
AU - Björklund, Andreas
AU - Kaski, Petteri
AU - Nederlof, Jesper
N1 - Publisher Copyright:
© Andreas Björklund, Petteri Kaski, and Jesper Nederlof.
PY - 2024/7
Y1 - 2024/7
N2 - Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class – the bipartite Pfaffian graphs of minimum degree three – where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.
AB - Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class – the bipartite Pfaffian graphs of minimum degree three – where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.
KW - Another Hamiltonian cycle
KW - Pfaffian graph
KW - planar graph
KW - Thomason’s lollipop method
UR - http://www.scopus.com/inward/record.url?scp=85198383918&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2024.26
DO - 10.4230/LIPIcs.ICALP.2024.26
M3 - Conference contribution
AN - SCOPUS:85198383918
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
A2 - Bringmann, Karl
A2 - Grohe, Martin
A2 - Puppis, Gabriele
A2 - Svensson, Ola
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Y2 - 8 July 2024 through 12 July 2024
ER -