Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Andreas Björklund*, Petteri Kaski*, Jesper Nederlof*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class – the bipartite Pfaffian graphs of minimum degree three – where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.

Original languageEnglish
Title of host publication51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
EditorsKarl Bringmann, Martin Grohe, Gabriele Puppis, Ola Svensson
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773225
DOIs
Publication statusPublished - Jul 2024
Event51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 - Tallinn, Estonia
Duration: 8 Jul 202412 Jul 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume297
ISSN (Print)1868-8969

Conference

Conference51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Country/TerritoryEstonia
CityTallinn
Period8/07/2412/07/24

Keywords

  • Another Hamiltonian cycle
  • Pfaffian graph
  • planar graph
  • Thomason’s lollipop method

Fingerprint

Dive into the research topics of 'Another Hamiltonian Cycle in Bipartite Pfaffian Graphs'. Together they form a unique fingerprint.

Cite this