Abstract
The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with femtosecond laserpulses of variable wavelengths. We show that we can grow a silica layer on the gold rods with controllable thickness. In future this can be used to control the alignment of the gold rods a 3D crystal in an electric field. The silica coated gold rods can be used in optical switches. In chapter 4 we show to have a very local control of changing the aspect ratio of gold rods by irradiation with femtosecond laserpulses of 82 MHz with a threshold of ~ 2 picojoules to deform the particles. In chapter 5 and 6 we show how, starting from spherical particles, dimers (dumbbells), trimers and multimers can be formed by controlled aggregation. Chapter 7 finally shows an overview of syntheses where the pores of (mainly) silica particles is decreased. We show that the pores of the given particles could be decreased from macroporous to (ultra)microporous. Through a full control of pore size particles can selectively be filled with materials (for instance a drug) and be controllably closed. This opens a route for synthesis of particles that can be used as molecular filters or in biomedical applications such as smart drug delivery.
Original language | Undefined/Unknown |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 13 Oct 2008 |
Publisher | |
Print ISBNs | 987-90-393-4894-9 |
Publication status | Published - 13 Oct 2008 |