An introduction to Bayesian model selection for evaluating informative hypotheses.

R. Van de Schoot, J. Mulder, H.J.A. Hoijtink, M.A.G. van Aken, J.S. Dubas, B. Orobio de Castro, W.H.J. Meeus, J. Romeijn

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Most researchers have specific expectations concerning their research questions. These may be derived from theory, empirical evidence, or both. Yet despite these expectations, most investigators still use null hypothesis testing to evaluate their data, that is, when analysing their data they ignore the expectations they have. In the present article, Bayesian model selection is presented as a means to evaluate the expectations researchers have, that is, to evaluate so called informative hypotheses. Although the methodology to do this has been described in previous articles, these are rather technical and havemainly been published in statistical journals. The main objective of thepresent article is to provide a basic introduction to the evaluation of informative hypotheses using Bayesian model selection. Moreover, what is new in comparison to previous publications on this topic is that we provide guidelines on how to interpret the results. Bayesian evaluation of informative hypotheses is illustrated using an example concerning psychosocial functioning and the interplay between personality and support from family.
Original languageEnglish
Pages (from-to)713-729
Number of pages17
JournalEuropean Journal of Developmental Psychology
Volume8
Issue number6
DOIs
Publication statusPublished - 2011

Keywords

  • Personality
  • Psychosocial functioning
  • Bayes factors
  • Informative hypothesis
  • Inequality constraints
  • Bayesian model selection

Fingerprint

Dive into the research topics of 'An introduction to Bayesian model selection for evaluating informative hypotheses.'. Together they form a unique fingerprint.

Cite this