TY - UNPB

T1 - Algebraic Presentations of Dependent Type Theories

AU - Ahrens, Benedikt

AU - Emmenegger, Jacopo

AU - North, Paige Randall

AU - Rijke, Egbert

N1 - v2: changed title, added some examples

PY - 2021/11/18

Y1 - 2021/11/18

N2 - C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky's construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky. We construct this equivalence as the restriction of an equivalence between more general structures, called CE-systems and E-systems, respectively. To this end, we identify C-systems and B-systems as "stratified" CE-systems and E-systems, respectively; that is, systems whose contexts are built iteratively via context extension, starting from the empty context.

AB - C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky's construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky. We construct this equivalence as the restriction of an equivalence between more general structures, called CE-systems and E-systems, respectively. To this end, we identify C-systems and B-systems as "stratified" CE-systems and E-systems, respectively; that is, systems whose contexts are built iteratively via context extension, starting from the empty context.

KW - math.CT

M3 - Preprint

BT - Algebraic Presentations of Dependent Type Theories

PB - arXiv

ER -