Algal biomarkers as a proxy for pCO2: Constraints from late quaternary sapropels in the eastern Mediterranean

Caitlyn R. Witkowski*, Marcel T.J. van der Meer, Brian Blais, Jaap S. Sinninghe Damsté, Stefan Schouten

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Records of carbon dioxide concentrations (partial pressure expressed as pCO2) over Earth's history provide trends that are critical to understand our changing world. To better constrain pCO2 estimations, here we test organic pCO2 proxies against the direct measurements of pCO2 recorded in ice cores. Based on the concept of stable carbon isotopic fractionation due to photosynthetic CO2 fixation (Ɛp), we use the stable carbon isotopic composition (δ13C) of the recently proposed biomarker phytol (from all photoautotrophs), as well as the conventionally used alkenone biomarkers (from specific species) for comparison, to reconstruct pCO2 over several Quaternary sapropel formation periods (S1, S3, S4, and S5) in the eastern Mediterranean Sea. The reconstructed pCO2 values are within error of the ice core values but consistently exceed the ice core values by ca. 100 µatm. This offset corresponds with atmospheric disequilibrium of present day CO2[aq] concentrations in the Mediterranean Sea from global pCO2, equivalent to ca. 100 µatm, although pCO2 estimates derived from individual horizons within each sapropel do not covary with the ice core values. This may possibly be due to greater variability in local CO2[aq] concentration changes in the Mediterranean, as compared with the global average pCO2, or possibly due to biases in the proxy, such as variable growth rate or carbon-concentrating mechanisms. Thus, the offset is likely a combination of physiological or environmental factors. Nevertheless, our results demonstrate that alkenone- and phytol-based pCO2 proxies yield statistically similar estimations (P-value = 0.02, Pearson's r-value = 0.56), and yield reasonable absolute estimations although with relatively large uncertainties (±100 µatm).

Original languageEnglish
Article number104123
Number of pages8
JournalOrganic Geochemistry
Volume150
DOIs
Publication statusPublished - Dec 2020

Keywords

  • Alkenones
  • Organic geochemical proxies
  • pCO2
  • Phytol
  • Sapropels

Fingerprint

Dive into the research topics of 'Algal biomarkers as a proxy for pCO2: Constraints from late quaternary sapropels in the eastern Mediterranean'. Together they form a unique fingerprint.

Cite this