Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition

Duygu Tolunay*, George A. Kowalchuk, Gilles Erkens, Mariet M. Hefting

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Downloads (Pure)

Abstract

Drained peatlands in temperate climates are under threat from climate change and human activities. The resulting decomposition of organic matter plays a major role in regulating the associated land subsidence rates, yet the determinants of aerobic and anaerobic peat decomposition rates are not fully understood. In this study, we sought to gain insight into the drivers of decomposition rates in botanically diverse peatlands (sedge, reed, wood, and moss dominant) under oxic and anoxic conditions. Peat samples were collected from the anoxic zone and incubated for 24 h (short) and 15 weeks (long) under either oxic or anoxic conditions. CO2 emissions, hydrolytic and oxidative exoenzyme potential activities, phenolic compound concentrations, and several edaphic factors were measured at the end of each incubation period. We found that 15 weeks of oxygen exposure of anoxic peat samples accelerated the average CO2 emissions by 3.9-fold. Reed and sedge peat respired more than wood and moss peat under anoxic conditions. Interestingly, CO2 emissions from anoxic peat layers under permanently anoxic conditions were substantial and given the thickness of peat deposits in the field, such activities may play an important role in long-term land subsidence rates and total CO2 emissions from drained peatlands. The results from the long-term incubations showed that decomposition rates appear to be also controlled by factors other than oxygen intrusion such as substrate availability. In summary, the botanical composition of the peat matrix, incubation conditions and time of incubation are all important factors that need to be considered when predicting peat decomposition and subsequent land subsidence rates.

Original languageEnglish
Article number172639
Number of pages12
JournalScience of the Total Environment
Volume930
DOIs
Publication statusPublished - 20 Jun 2024

Keywords

  • CO emission
  • Decomposition
  • Exoenzymes
  • Land subsidence
  • Peat oxidation
  • Peatlands

Fingerprint

Dive into the research topics of 'Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition'. Together they form a unique fingerprint.

Cite this