Abstract
Ordinal classification is a specific and demanding task, where the aim is not only to increase accuracy, but to also capture the natural order between the classes, and penalize incorrect predictions by how much they deviate from this ranking. If an ordinal classifier must be able to comply with all these requirements, a suitable ordinal metric must be able to accurately measure its degree of compliance. However, the current metrics are unable to completely capture these considerations when assessing classification performance. Moreover, most suffer from sensitivity to imbalanced classes, very common in ordinal classification. In this paper, we propose two variants of a novel performance index that accounts for both accuracy and ranking in the performance assessment of ordinal classification, and is robust against imbalanced classes.
Original language | English |
---|---|
Title of host publication | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings |
Publisher | IEEE |
ISBN (Electronic) | 9781509060146 |
DOIs | |
Publication status | Published - 10 Oct 2018 |
Event | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Rio de Janeiro, Brazil Duration: 8 Jul 2018 → 13 Jul 2018 |
Publication series
Name | Proceedings of the International Joint Conference on Neural Networks |
---|---|
Volume | 2018-July |
Conference
Conference | 2018 International Joint Conference on Neural Networks, IJCNN 2018 |
---|---|
Country/Territory | Brazil |
City | Rio de Janeiro |
Period | 8/07/18 → 13/07/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.