A tool to estimate bar patterns and flow conditions in estuaries when limited data is available

Steye Verhoeve, J.R.F.W. Leuven, S. Selakovic, Andy Bruijns, W.M. van Dijk, M.G. Kleinhans

Research output: Contribution to conferenceAbstractOther research output

Abstract

The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic reconstructions.
Original languageEnglish
Publication statusPublished - 11 Dec 2017
EventAGU Fall Meeting 2017 - New Orleans, United States
Duration: 11 Dec 201715 Dec 2017
https://fallmeeting.agu.org/2017/#

Conference

ConferenceAGU Fall Meeting 2017
Abbreviated titleAGU Fall Meeting 2017
Country/TerritoryUnited States
CityNew Orleans
Period11/12/1715/12/17
Internet address

Fingerprint

Dive into the research topics of 'A tool to estimate bar patterns and flow conditions in estuaries when limited data is available'. Together they form a unique fingerprint.

Cite this