A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences

Leonardo Bertolazzi, Albert Gatt, Raffaella Bernardi

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

The reasoning abilities of Large Language Models (LLMs) are becoming a central focus of study in NLP. In this paper, we consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology. Previous research has shown that pre-trained LLMs exhibit reasoning biases, such as content effects, avoid answering that no conclusion follows, display human-like difficulties, and struggle with multi-step reasoning. We contribute to this research line by systematically investigating the effects of chain-of-thought reasoning, in-context learning (ICL), and supervised fine-tuning (SFT) on syllogistic reasoning, considering syllogisms with conclusions that support or violate world knowledge, as well as ones with multiple premises. Crucially, we go beyond the standard focus on accuracy, with an in-depth analysis of the conclusions generated by the models. Our results suggest that the behavior of pre-trained LLMs can be explained by heuristics studied in cognitive science and that both ICL and SFT improve model performance on valid inferences, although only the latter mitigates most reasoning biases without harming model consistency.

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages13882-13905
Number of pages24
ISBN (Electronic)9798891761643
DOIs
Publication statusPublished - Nov 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: 12 Nov 202416 Nov 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period12/11/2416/11/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences'. Together they form a unique fingerprint.

Cite this