Abstract
We have evaluated high-performance capillary electrophoresis (HPCE) with respect to its suitability for use in establishing a carbohydrate-mapping database that would enable a carbohydrate structural analysis by mere comparison of migration times. The suitability of HPCE for carbohydrate structural assignments was ascertained by validation experiments. The migration times of distinct N-glycans, prepared and measured on different days, were shown to be highly reproducible, with a coefficient of variation of usually less than 0.20%, requiring only femtomoles of N-glycan per injection for reliable measurements. By including mesityl oxide and sialic acid as internal standards and a triple-correction method, HPCE fulfills the analytical requirements with respect to accuracy, precision, reproducibility, and sensitivity. The N-glycan-mapping database was established using a newly developed and optimized buffer system containing 1,5-diaminopentane as an organic modifier. Approximately 80 different sialylated N-glycans of known structure, which have thus far been measured and characterized, have been entered into our Lotus 1-2-3 mapping database. The database for structural determinations was tested using the N-linked carbohydrates released from recombinant human urinary erythropoietin (baby hamster kidney) by PNGase F treatment and from bovine serum fetuin and α1-acid glycoprotein by automated and manual (large-scale) hydrazinolysis, respectively. The efficiency of the database and of the triple-correction method was further confirmed by HPCE measurements performed in a different laboratory and by a different analyst who used the HPCE system of a different manufacturer.
Original language | English |
---|---|
Pages (from-to) | 29-41 |
Number of pages | 13 |
Journal | Analytical Biochemistry |
Volume | 221 |
Issue number | 1 |
DOIs | |
Publication status | Published - 9 Jul 1994 |
Keywords
- glycan derivative
- article
- carbohydrate analysis
- data base
- electrophoresis
- gel electrophoresis
- priority journal