TY - JOUR
T1 - A Spatially Explicit Evaluation of the Economic Performance of a Perennial Energy Crop on the Marginal Land of the Loess Plateau and China
AU - Liu, Yanmei
AU - Hastings, Astley
AU - Chen, Shaolin
AU - Faaij, André
N1 - Funding Information:
This study was supported by the Chinese Scholarship Council (CSC) and partially supported by the National Key Project of Intergovernmental Cooperation in International Scientific and Technological Innovation (2018YFE0112400 to SC). Astley Hastings was funded by the ADVENT project funded by the UK Natural Environment Research Council (NE/M019691/1) and ADVANCES funded by the UK Natural Environment Research Council (NE/M019691/1), EPSRC-funded UKERC-4, and the BBSRC-funded PCB4GGR project (BB/V011553/1).
Funding Information:
The basic data on land use, climate, and soil properties were supported by the Loess Plateau Data Center, the National Earth System Science Data Sharing Infrastructure, and the National Science & Technology Infrastructure of China ( http://loess.geodata.cn (accessed on 1 January 2021). The marginal land data and land suitability data of the Loess Plateau are available in []. The spatially explicit yield data of switchgrass on the Loess plateau are available in [], and the data can download at https://figshare.com/articles/figure/Spatial_distribution_of_the_yield_biomass_of_switchgrass_on_the_marginal_land_of_the_Loess_plateau/21047224 (accessed on 6 May 2022). Acknowledgments
Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - The Loess Plateau, with a large area of marginal land, holds the potential to produce 62–106 Tg per year of switchgrass biomass; however, the economic feasibility of producing bioenergy in the region is unclear. The farm-gate feedstock production (FGFP) cost of switchgrass was calculated in a spatially explicit way by taking the geographic variation in crop yield, soil properties, land quality, and input costs into consideration in order to evaluate the economic performance of bioenergy production. Cost–supply curves were constructed to explore the energy supply potential of switchgrass feedstock. The calculations were conducted using ArcGIS in a 1 km grid and all the evaluations were conducted under different agricultural management practice (AMP) scenarios in parallel. The FGFP costs showed significant spatial variation ranging from 95 to 7373 CNY (Chinese Yuan) per tonne−1 and that the most economically desirable areas are scattered in the south and southeast region. The weighted average FGFP costs are 710, 1125, and 1596 CNY per tonne−1 for small bale (SB), large bale (LB), and chipping (CP) harvest methods, respectively. The projected energy supply potential is 1927 PJ (Petajoules) per year−1, of which 30–93% can be supplied below the market prices of different fossil fuels according to feedstock formats. Compared to current biomass residual pricing, 50–66 Tg (Teragrams) switchgrass feedstock is competitive. The results demonstrated that the Loess Plateau holds the potential to produce bioenergy that is economically feasible. This study provides a methodological framework for spatially explicit evaluation of the economic performance of perennial energy crops. Detailed information obtained from this study can be used to select the optimal locations and AMPs to produce feedstock production at minimum cost.
AB - The Loess Plateau, with a large area of marginal land, holds the potential to produce 62–106 Tg per year of switchgrass biomass; however, the economic feasibility of producing bioenergy in the region is unclear. The farm-gate feedstock production (FGFP) cost of switchgrass was calculated in a spatially explicit way by taking the geographic variation in crop yield, soil properties, land quality, and input costs into consideration in order to evaluate the economic performance of bioenergy production. Cost–supply curves were constructed to explore the energy supply potential of switchgrass feedstock. The calculations were conducted using ArcGIS in a 1 km grid and all the evaluations were conducted under different agricultural management practice (AMP) scenarios in parallel. The FGFP costs showed significant spatial variation ranging from 95 to 7373 CNY (Chinese Yuan) per tonne−1 and that the most economically desirable areas are scattered in the south and southeast region. The weighted average FGFP costs are 710, 1125, and 1596 CNY per tonne−1 for small bale (SB), large bale (LB), and chipping (CP) harvest methods, respectively. The projected energy supply potential is 1927 PJ (Petajoules) per year−1, of which 30–93% can be supplied below the market prices of different fossil fuels according to feedstock formats. Compared to current biomass residual pricing, 50–66 Tg (Teragrams) switchgrass feedstock is competitive. The results demonstrated that the Loess Plateau holds the potential to produce bioenergy that is economically feasible. This study provides a methodological framework for spatially explicit evaluation of the economic performance of perennial energy crops. Detailed information obtained from this study can be used to select the optimal locations and AMPs to produce feedstock production at minimum cost.
KW - biomass
KW - economic performance
KW - energy supply
KW - farm-gate feedstock production cost
KW - marginal land
KW - switchgrass
UR - http://www.scopus.com/inward/record.url?scp=85166252575&partnerID=8YFLogxK
U2 - 10.3390/en16145282
DO - 10.3390/en16145282
M3 - Article
AN - SCOPUS:85166252575
SN - 1996-1073
VL - 16
JO - Energies
JF - Energies
IS - 14
M1 - 5282
ER -