A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide

Rafael Gregorio Mendes, Britta Koch, Alicja Bachmatiuk, Xing Ma, Samuel Sanchez, Christine Damm, Oliver G. Schmidt, Thomas Gemming, Jürgen Eckert, Mark H. Rümmeli

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.
Original languageEnglish
Pages (from-to)2522-2529
Number of pages8
JournalJournal of Materials Chemistry B
Volume3
Issue number12
DOIs
Publication statusPublished - 28 Mar 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide'. Together they form a unique fingerprint.

Cite this