A single Na+ channel mutation causing both Long-QT and Brugada syndromes

C. Bezzina, M.W. Veldkamp, M.P. van den Berg, A.V. Postma, M.B. Rook, J.-W. Viersma, M. van Langen, G. Tan-Sindhunata, M.T.E. Bink-Boelkens, A.H. van der Hout, M.M.A.M. Mannens, A.A.M. Wilde

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Mutations in SCN5A, the gene encoding the cardiac Na(+) channel, have been identified in 2 distinct diseases associated with sudden death: one form of the long-QT syndrome (LQT(3)) and the Brugada syndrome. We have screened SCN5A in a large 8-generation kindred characterized by a high incidence of nocturnal sudden death, and QT-interval prolongation and the "Brugada ECG" occurring in the same subjects. An insertion of 3 nucleotides (TGA) at position 5537, predicted to cause an insertion of aspartic acid (1795insD) in the C-terminal domain of the protein, was linked to the phenotype and was identified in all electrocardiographically affected family members. ECGs were obtained from 79 adults with a defined genetic status (carriers, n=43; noncarriers, n=36). In affected individuals, PR and QRS durations and QT intervals are prolonged (P<0.0001 for all parameters). ST segment elevation in the right precordial leads is present as well (P<0.0001). Twenty-five family members died suddenly, 16 of them during the night. Expression of wild-type and mutant Na(+) channels in Xenopus oocytes revealed that the 1795insD mutation gives rise to a 7.3-mV negative shift of the steady-state inactivation curve and an 8.1-mV positive shift of the steady-state activation curve. The functional consequence of both shifts is likely to be a reduced Na(+) current during the upstroke of the action potential. LQT(3) and Brugada syndrome are allelic disorders but may also share a common genotype.
Original languageEnglish
Pages (from-to)1206-1213
Number of pages8
JournalCirculation Research
Volume85
Issue number12
DOIs
Publication statusPublished - Dec 1999

Keywords

  • Econometric and Statistical Methods: General
  • Geneeskunde(GENK)
  • Algemeen onderzoek
  • Other medical specialities

Fingerprint

Dive into the research topics of 'A single Na+ channel mutation causing both Long-QT and Brugada syndromes'. Together they form a unique fingerprint.

Cite this