A serum proteome signature to predict mortality in severe COVID-19 patients

Franziska Völlmy, Henk van den Toorn, Riccardo Zenezini Chiozzi, Ottavio Zucchetti, Alberto Papi, Carlo Alberto Volta, Luisa Marracino, Francesco Vieceli Dalla Sega, Francesca Fortini, Vadim Demichev, Pinkus Tober-Lau, Gianluca Campo, Marco Contoli, Markus Ralser, Florian Kurth, Savino Spadaro, Paola Rizzo, Albert Jr Heck

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Here, we recorded serum proteome profiles of 33 severe COVID-19 patients admitted to respiratory and intensive care units because of respiratory failure. We received, for most patients, blood samples just after admission and at two more later time points. With the aim to predict treatment outcome, we focused on serum proteins different in abundance between the group of survivors and non-survivors. We observed that a small panel of about a dozen proteins were significantly different in abundance between these two groups. The four structurally and functionally related type-3 cystatins AHSG, FETUB, histidine-rich glycoprotein, and KNG1 were all more abundant in the survivors. The family of inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3, and ITIH4, were all found to be differentially abundant in between survivors and non-survivors, whereby ITIH1 and ITIH2 were more abundant in the survivor group and ITIH3 and ITIH4 more abundant in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 also showed opposite trends in protein abundance during disease progression. We defined an optimal panel of nine proteins for mortality risk assessment. The prediction power of this mortality risk panel was evaluated against two recent COVID-19 serum proteomics studies on independent cohorts measured in other laboratories in different countries and observed to perform very well in predicting mortality also in these cohorts. This panel may not be unique for COVID-19 as some of the proteins in the panel have previously been annotated as mortality markers in aging and in other diseases caused by different pathogens, including bacteria.

Original languageEnglish
Article numbere202101099
Pages (from-to)1-12
Number of pages12
JournalLife Science Alliance
Volume4
Issue number9
DOIs
Publication statusPublished - Sept 2021

Fingerprint

Dive into the research topics of 'A serum proteome signature to predict mortality in severe COVID-19 patients'. Together they form a unique fingerprint.

Cite this