A refined modular approach to the Diophantine equation $x^2+y^{2n}=z^3$

S.R. Dahmen

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    Let $n$ be a positive integer and consider the Diophantine equation of generalized Fermat type $x^2+y^{2n}=z^3$ in nonzero coprime integer unknowns $x,y,z$. Using methods of modular forms and Galois representations for approaching Diophantine equations, we show that for $n \in \{5, 31\}$ there are no solutions to this equation. Combining this with previously known results, this allows a complete description of all solutions to the Diophantine equation above for $n \leq 10^7$. Finally, we show that there are also no solutions for $n\equiv -1 \pmod{6}$
    Original languageEnglish
    Pages (from-to)1303-1316
    Number of pages14
    JournalInternational Journal of Number Theory
    Volume7
    Issue number5
    DOIs
    Publication statusPublished - 2011

    Keywords

    • Wiskunde en Informatica (WIIN)
    • Mathematics
    • Landbouwwetenschappen
    • Natuurwetenschappen
    • Wiskunde: algemeen

    Fingerprint

    Dive into the research topics of 'A refined modular approach to the Diophantine equation $x^2+y^{2n}=z^3$'. Together they form a unique fingerprint.

    Cite this