TY - UNPB
T1 - A neighbourhood theorem for submanifolds in generalized complex geometry
AU - Bailey, Michael
AU - Cavalcanti, Gil R.
AU - Durán, Joey van der Leer
N1 - 35 pages
PY - 2019/6/28
Y1 - 2019/6/28
N2 - We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B-field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B-field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash-Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B-field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.
AB - We study neighbourhoods of submanifolds in generalized complex geometry. Our first main result provides sufficient criteria for such a submanifold to admit a neighbourhood on which the generalized complex structure is B-field equivalent to a holomorphic Poisson structure. This is intimately tied with our second main result, which is a rigidity theorem for generalized complex deformations of holomorphic Poisson structures. Specifically, on a compact manifold with boundary we provide explicit conditions under which any generalized complex perturbation of a holomorphic Poisson structure is B-field equivalent to another holomorphic Poisson structure. The proofs of these results require two analytical tools: Hodge decompositions on almost complex manifolds with boundary, and the Nash-Moser algorithm. As a concrete application of these results, we show that on a four-dimensional generalized complex submanifold which is generically symplectic, a neighbourhood of the entire complex locus is B-field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbourhood theorem to develop the theory of blowing down submanifolds in generalized complex geometry.
KW - Generalized complex geometry
KW - Neighbourhood theorem
KW - Branes
KW - Poisson geometry
U2 - 10.48550/arXiv.1906.12069
DO - 10.48550/arXiv.1906.12069
M3 - Preprint
SP - 1
EP - 35
BT - A neighbourhood theorem for submanifolds in generalized complex geometry
PB - arXiv
ER -