Abstract
Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2. Few ligands are known, which selectively target the coactivator side of the AF2, or which can be selectively switched from one side of the interface to the other. We use NMR spectroscopy and modeling to identify a natural product, which targets the retinoid X receptor (RXR) at both sides of the AF2. We then use chemical synthesis, cellular screening and X-ray co-crystallography to split this dual activity, leading to a potent and molecularly efficient RXR agonist, and a first-of-kind inhibitor selective for the RXR/coactivator interaction. Our findings justify future exploration of natural products at dynamic protein interfaces.
Original language | English |
---|---|
Pages (from-to) | 6443-6448 |
Number of pages | 6 |
Journal | Angewandte Chemie - International Edition |
Volume | 53 |
Issue number | 25 |
DOIs | |
Publication status | Published - 16 Jun 2014 |
Keywords
- drug discovery
- natural products
- nuclear receptors
- protein-protein interactions
- retinoid X receptor