A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen

J. Oerlemans*, W. J. J. van Pelt

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produce the correct Little Ice Age maximum glacier length and simulate the observed magnitude of the 1978 surge.

Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions remain as they were for the period 1989-2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m year(-1) rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long.

The main effect of a surge is to lower the mean surface elevation and thereby to increase the ablation area, causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a faster retreat of the glacier in a warming climate.

Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude. If the equilibrium line were lowered by only 160 m, the glacier would steadily grow into Woodfjorddalen until, after 2000 years, it would reach Woodfjord and calving would slow down the advance.

The bed topography of Abrahamsenbreen is not known and was therefore inferred from the slope and length of the glacier. The value of the plasticity parameter needed to do this was varied by +20 and -20 %. After recalibration the same climate change experiments were performed, showing that a thinner glacier (higher bedrock in this case) in a warming climate retreats somewhat faster.

Original languageEnglish
Pages (from-to)767-779
Number of pages13
JournalThe Cryosphere
Volume9
Issue number2
DOIs
Publication statusPublished - 2015

Keywords

  • ICE SHEETS
  • SVALBARD
  • CONTRASTS
  • MECHANISM
  • DYNAMICS
  • BALANCE
  • REGIONS
  • PHASE
  • WATER

Fingerprint

Dive into the research topics of 'A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen'. Together they form a unique fingerprint.

Cite this