A friendly smoothed analysis of the simplex method

Daniel Dadush*, Sophie Huiberts

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Explaining the excellent practical performance of the simplex method for linear programming has been a major topic of research for over 50 years. One of the most successful frameworks for understanding the simplex method was given by Spielman and Teng (JACM ‘04), who developed the notion of smoothed analysis. Starting from an arbitrary linear program with d variables and n constraints, Spielman and Teng analyzed the expected runtime over random perturbations of the LP (smoothed LP), where variance 2 Gaussian noise is added to the LP data. In particular, they gave a two-stage shadow vertex simplex algorithm which uses an expected O(d55n86(1+ −30)) number of simplex pivots to solve the smoothed LP. Their analysis and runtime was substantially improved by Deshpande and Spielman (FOCS ‘05) and later Vershynin (SICOMP ‘09). The fastest current algorithm, due to Vershynin, solves the smoothed LP using an expected O(d3 log3 n −4 + d9 log7 n) number of pivots, improving the dependence on n from polynomial to logarithmic. While the original proof of Spielman and Teng has now been substantially simplified, the resulting analyses are still quite long and complex and the parameter dependencies far from optimal. In this work, we make substantial progress on this front, providing an improved and simpler analysis of shadow simplex methods, where our main algorithm requires an expected O(d2log n −2 + d5 log3/2 n) number of simplex pivots. We obtain our results via an improved shadow bound, key to earlier analyses as well, combined with algorithmic techniques of Borgwardt (ZOR ‘82) and Vershynin. As an added bonus, our analysis is completely modular, allowing us to obtain non-trivial bounds for perturbations beyond Gaussians, such as Laplace perturbations.

Original languageEnglish
Title of host publicationSTOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
EditorsMonika Henzinger, David Kempe, Ilias Diakonikolas
PublisherAssociation for Computing Machinery
Pages390-403
Number of pages14
ISBN (Electronic)9781450355599
DOIs
Publication statusPublished - 20 Jun 2018
Externally publishedYes
Event50th Annual ACM Symposium on Theory of Computing, STOC 2018 - Los Angeles, United States
Duration: 25 Jun 201829 Jun 2018

Conference

Conference50th Annual ACM Symposium on Theory of Computing, STOC 2018
Country/TerritoryUnited States
CityLos Angeles
Period25/06/1829/06/18

Keywords

  • Linear programming
  • Shadow vertex simplex method
  • Smoothed analysis

Fingerprint

Dive into the research topics of 'A friendly smoothed analysis of the simplex method'. Together they form a unique fingerprint.

Cite this