A conformational transition of the D9D3 domain primes von Willebrand factor for multimerization

Sophia Gruber, Achim Lof, Adina Hausch, Fabian Kutzki, Res Johr, Tobias Obser, Gesa Konig, Reinhard Schneppenheim, Camilo Aponte-Santamaría, Frauke Grater, Maria A. Brehm, Martin Benoit*, Jan Lipfert

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D9D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D9D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D9D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.

Original languageEnglish
Pages (from-to)5198-5209
Number of pages12
JournalBlood advances
Volume6
Issue number17
DOIs
Publication statusPublished - 13 Sept 2022

Fingerprint

Dive into the research topics of 'A conformational transition of the D9D3 domain primes von Willebrand factor for multimerization'. Together they form a unique fingerprint.

Cite this