A comparison of Paley-Wiener theorems for real reductive Lie groups

E.P. van den Ban, S. Souaifi

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In this paper we make a detailed comparison between the Paley–Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group G. We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra of bi-K-finite distributions supported on K, a maximal compact subgroup of G. Our techniques involve derivatives of holomorphic families of continuous representations and Harish-Chandra modules.
Original languageEnglish
Pages (from-to)99-149
Number of pages51
JournalJournal fur die Reine und Angewandte Mathematik
Volume2014
Issue number695
DOIs
Publication statusPublished - 6 Feb 2013

Keywords

  • Wiskunde en Informatica (WIIN)
  • Mathematics
  • Wiskunde en computerwetenschappen
  • Landbouwwetenschappen
  • Wiskunde: algemeen

Fingerprint

Dive into the research topics of 'A comparison of Paley-Wiener theorems for real reductive Lie groups'. Together they form a unique fingerprint.

Cite this