Abstract
In this paper we make a detailed comparison between the Paley–Wiener theorems of J. Arthur and P. Delorme for a real reductive Lie group G. We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of the Hecke algebra of bi-K-finite distributions supported on K, a maximal compact subgroup of G. Our techniques involve derivatives of holomorphic families of continuous representations and Harish-Chandra modules.
Original language | English |
---|---|
Pages (from-to) | 99-149 |
Number of pages | 51 |
Journal | Journal fur die Reine und Angewandte Mathematik |
Volume | 2014 |
Issue number | 695 |
DOIs | |
Publication status | Published - 6 Feb 2013 |
Keywords
- Wiskunde en Informatica (WIIN)
- Mathematics
- Wiskunde en computerwetenschappen
- Landbouwwetenschappen
- Wiskunde: algemeen